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ABSTRACT

This study evaluates the Loss-of-Life (LOL) based on the modified relative aging rate of 
an Oil Natural Air Natural (ONAN) transformer with voltage and power ratings of 132/33 
kV and 60 MVA. The study’s methodology included the determination of the Hotspot 
Temperature (HST) based on the differential equation in IEC 60076-7. The loading and 
ambient temperature profiles for HST determination are forecasted based on the Seasonal 
Autoregressive Integrated Moving Average (SARIMA). Next, a new relative aging rate 
was developed based on the Arrhenius equation, considering the pre-exponential factors 
governed by oxygen, moisture in paper, and acids at different content levels. The LOL 
was computed based on the new relative aging rate. The study’s main aim is to examine 

the impact of pre-exponential factors on 
the LOL based on modified Arrhenius and 
relative aging rate. The results indicate that 
the LOLs for different conditions increase 
as the oxygen, moisture, low molecular 
weight acid (LMA), and high molecular 
weight acid (HMA) increase. The LOLs are 
46 days, 1,354 days, and 2,662 days in the 
presence of 12,000 ppm, 21,000 ppm, and 
30,000 ppm of oxygen. In 1%, 3%, and 5% 
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moisture, the LOLs are 477 days, 2,799 days, and 7,315 days. At 1% moisture, the LOL 
is 1,418 days for LMA, while for HMA, it is 122 days. The LMA has the highest impact 
on the LOL compared to other aging acceleration factors.

Keywords: Arrhenius equation, cellulose aging, loss-of-life, pre-exponential factor, relative aging rate

INTRODUCTION

It is known that the life of power transformers predominantly relies on cellulose-based 
insulation. Among the approaches to analyzing the life of cellulose paper insulation is 
thermal life modeling. This approach determines the hot-spot temperature (HST), insulation 
paper aging rate, and loss-of-life (LOL) of transformers. The input data of ambient 
temperature and time-varying load control these parameters. The HST, aging rate, and 
LOL can be computed through models in international standards. 

A sufficient input parameter such as loading and ambient temperature profile is 
essential to increase the accuracy of HST for assessment of the paper aging rate and LOL. 
However, in most cases, these parameters are not always available, especially for long 
intervals. Therefore, forecasting these input data would help with long-term analyses. 
Several methods to forecast the loading were established by Agrawal et al. (2018), Chen 
et al. (2017), Hou et al. (2021), Khalid et al. (2020), Khorsheed (2021), Mohammed and 
Al-Bazi (2022), and Sinha et al. (2021). In addition, the ambient temperature profiles 
were found in Afzali et al. (2011), Hou et al. (2022), Ma et al. (2020), Radhika and 
Shashi (2009), Tripathy and Prusty (2021), and Van den Berg et al. (2022). Seasonal 
Autoregressive Integrated Moving Average (SARIMA) is one of the established methods 
that can be utilized to forecast any short, medium, or long-term data with the characteristic 
of strong seasonal patterns and univariate time series (Al-Shaikh et al., 2019). The method 
is promising for forecasting the future loading and ambient temperature profiles for the 
transformer’s application.

Among the primary contributors to the degradation of insulation paper are temperature 
and aging acceleration factors, i.e., oxygen, moisture in paper, and acids. Due to non-
uniform temperature distribution within a transformer, the region that experiences the 
highest temperature, referred to as the hot spot, undergoes the most substantial degradation 
and affects the aging rate of the paper. The modeling of the relative aging rate as per IEC 
60076-7 (Feng, 2013; Novkovic et al., 2022) relies mainly on the HST as the important 
parameter without considering other aging acceleration factors. The model is also applied 
widely in various studies conducted by Biçen et al. (2011, 2012), Najdenkoski et al. (2007), 
BL and Mathew (2016) and Piatniczka et al. (2022). 

A relative aging rate model that considers several aging acceleration factors was 
previously examined (Hosseinkhanloo et al., 2022). The relative aging rate is obtained 
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through the ratio of the paper aging rate for any temperatures and conditions over the paper 
aging rate at the rated condition. The previous study considers two aging factors, i.e., oxygen 
and moisture, to determine the relative aging rate (Hosseinkhanloo et al., 2022). Recently, 
the importance of low molecular acid (LMA) and high molecular acid (HMA) to govern 
paper aging is highlighted, which prompts further modeling study on this aspect. Since 
the aging in a transformer is a dynamic process, it is anticipated that the pre-exponential 
factors and activation energies for oxygen and moisture that are directly applied to the 
CIGRE Brochure 393 (2009) could vary based on the specific aging mechanism to evaluate 
the relative aging rate.

Modeling paper aging is one of the key aspects of evaluating the integrity of the 
transformers (Feng, 2013). Currently, there are various methods based on either laboratory 
accelerated aging experimental data or in-service data that are introduced to evaluate paper 
aging (Arshad et al., 2004; Liao et al., 2011; Li et al., 2018; Liu et al., 2015; Zhang et al., 
2021). The Arrhenius model is one of the common approaches to determining the paper 
aging rate by considering the aging factors and mechanisms (Feng, 2013). The paper aging 
rate depends on the HST, pre-exponential factor, and activation energy. Recently, a modified 
relative aging rate model has been proposed based on the Arrhenius model (Novkovic et 
al., 2022), which considers the variation of pre-exponential factors according to the paper 
aging acceleration factors and activation energies, which are based on the aging mechanism 
(Saleh et al., 2022).

Utilizing the information on pre-exponential factors from the previous work (Saleh et 
al., 2022), the long-term life assessment based on the modified relative aging rate model 
is examined. First, the HST is calculated using the differential equation according to IEC 
60076-7 (Feng, 2013; Novkovic et al., 2022). The HST computation’s loading and ambient 
temperature profiles are forecasted based on SARIMA. Next, the new relative aging rate 
is determined based on the pre-exponential factors, the Arrhenius model, and the relative 
aging rate as per IEC 60076-7 (Feng, 2013; Novkovic et al., 2022). Finally, the LOL is 
computed based on the pre-determined new relative aging rate. The computation of the 
new relative aging rate and LOL based on a single aging factor of either oxygen, moisture 
in paper, or acids in the paper is also examined.

METHODOLOGY

Seasonal Autoregressive Integrated Moving Average (SARIMA)

The forecasting of loading input parameters and ambient temperature profiles was modeled 
using SARIMA since it supported univariate data with seasonal change. The recorded actual 
loading profile, taken at 15-minute intervals over 15 days, was utilized to forecast the data 
for one year. Similar to the loading profile, the ambient temperature profile, recorded at 
1-hour intervals for seven months, was used to forecast data for one year.
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SARIMA is an enhancement based on the ARIMA model that incorporates the 
parameters of (p,d,q) × (P,D,Q)m whereby p and P represent the autoregressive and seasonal 
autoregressive orders, while d and D denote the difference and seasonal difference orders, 
respectively. Additionally, q and Q indicate the moving averages and seasonal moving 
average orders, respectively, and m stands for the seasonal period. The SARIMA is 
expressed by Equation 1 (Cabrera et al., 2013), where each term is mathematically defined 
as in Equations 2, 3, 4, and 5, respectively.

is mathematically defined as in Equations 2, 3, 4, and 5, respectively. 
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Φ𝑃𝑃(𝐵𝐵𝑆𝑆) =1−Φ𝑆𝑆𝐵𝐵𝑆𝑆−Φ2𝑆𝑆𝐵𝐵2𝑆𝑆 − ⋯ −Φ𝑃𝑃𝑆𝑆𝐵𝐵𝑆𝑆    [3] 
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Accuracy Measurement

The accuracy measurement of the forecasted loading profile and ambient temperature profile 
was conducted based on three metrics known as Mean Absolute Percentage Error (MAPE), 
Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Low MAPE, MAE, 
and RMSE indicate a well-fitted model, defined by Equations 6, 7, and 8, respectively.

Equations 6, 7, and 8, respectively. 
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Where N is the number of actual data, Yt is the actual data at time, t and 𝑌𝑌�𝑡𝑡   is the forecasted 
data at time, t.

Thermal Modelling Parameters

The thermal modeling parameters are essential as the input data to determine a transformer’s 
Top-oil Temperature (TOT) and HST based on the differential equation method. The 
thermal modeling parameters can typically be obtained from the transformer-specific 
thermal constants (Susa et al., 2005a; Susa et al., 2005b). The standard thermal modeling 
parameters can be acquired from IEC 60076-7 without specific thermal constants.

Table 1 shows the thermal modelling parameters for the transformer. The thermal 
modelling parameters were selected based on the ONAN medium and large power 
transformers as per IEC 60076-7 (Feng, 2013). The oil time constant, τo; winding time 
constant, τw; oil exponent, x; winding exponent, y; the constants, k11, k21, and k22, were 
acquired as per IEC 60076-7. The ratio of load losses (copper loss) to no-load losses (iron 
loss), R and top-oil temperature rise at rated current, ΔӨor were obtained per the temperature 
rise report. The hot-spot to top-oil temperature at rated current, ΔӨhr, was calculated based 
on Equation 9 as per IEC 60076-7 (Feng, 2013; Novkovic et al., 2022; Susa et al., 2005a).

∆𝜃𝜃ℎ𝑟𝑟 = 𝐻𝐻 × 𝑔𝑔𝑟𝑟                       [9]

Where ∆𝜃𝜃ℎ𝑟𝑟 = 𝐻𝐻 × 𝑔𝑔𝑟𝑟    is the hot-spot to top-oil temperature at rated current, H is the hot-spot factor 
while gr is the average winding to average oil gradient. The value of hot-spot factor, H 
was directly obtained from (Feng, 2013) and the average winding to average oil gradient,  

Table 1
The thermal modelling parameters 

Characteristic Parameter
Oil exponent, x 0.8
Winding exponent, y 1.3
Constant, k11 0.5
Constant, k21 2.0
Constant, k22 2.0
Oil time constant, τo 210
Winding time constant, τw 10
Ratio of load losses to no-load 
losses, R 4.66

Top-oil temperature rise at rated 
current, ΔӨor

44.07

Hot-spot to top-oil temperature at 
rated current, ΔӨhr

33.624

Time step, D3 3 minutes

gr was acquired based on the temperature 
rise report. The time step value, D3, was set 
at three minutes since it should be less than 
half the shortest winding time constant, τw 
as per IEC 60076-7 (Feng, 2013; Novkovic 
et al., 2022).

Top-Oil Temperature (TOT) and Hot-
Spot Temperature (HST) based on 
IEC60076-7

The TOT and HST were determined based 
on differential method as per IEC 60076-7 
(Feng, 2013; Novkovic et al., 2022). The 
differential method was selected for its 
adaptability to the time-varying load and 
ambient temperature (Feng, 2013). The 
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input parameters of thermal modeling forecasted loading and ambient temperature profiles 
were utilized to compute the TOT. Subsequently, the HST was computed based on the 
forecasted loading profile, ambient temperature profile and pre-determined TOT. The 
evaluation of TOT and HST was considered for a paper’s modified relative aging rate.

Relative Aging Rate

According to IEC 60076-7, the HST of 98 °C refers to the aging rate of the transformer’s inter-
turn insulation under the time and temperature effects for the NTUP (Feng, 2013; Novkovic 
et al., 2022). Furthermore, the relative aging rate, V was defined based on Equation 10.

 

V = 2(θhst -98)/6          [10] 

1
𝐷𝐷𝑃𝑃𝑒𝑒𝑒𝑒 𝑑𝑑

− 1
𝐷𝐷𝑃𝑃𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡

= 𝐴𝐴𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅(𝜃𝜃ℎ𝑠𝑠𝑡𝑡+273 ) × 𝑡𝑡     [11] 

            [10]

Where V is the relative aging rate for NTUP while 𝜃𝜃ℎ𝑠𝑠𝑡𝑡   is the HST in oC. It is based on 
Montsigner’s life expectancy (Feng, 2013) and Dankin’s aging rate formulas (IEEE 
Standards, 2012), simplified from the Arrhenius equation as shown in Equation 11.

 

V = 2(θhst -98)/6          [10] 

1
𝐷𝐷𝑃𝑃𝑒𝑒𝑒𝑒 𝑑𝑑

− 1
𝐷𝐷𝑃𝑃𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡

= 𝐴𝐴𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅(𝜃𝜃ℎ𝑠𝑠𝑡𝑡+273 ) × 𝑡𝑡     [11]       [11]

Where DPend and DPstart are the paper DP at any time, t, or the end-of-life criterion, while 
DPstart is the initial paper DP. On the other hand, A is the pre-exponential factor in 1/h; E a 
is the activation energy in kJ/mol, R is the gas constant in 8.314 J/mol/K, 𝜃𝜃ℎ𝑠𝑠𝑡𝑡   is the HST 
in oC and t is the lifetime of the insulation in an hour.

Equation 10 implies that the aging rate does not consider different aging factors, i.e., 
oxygen, moisture, and acids, and it is simply dependent on HST only. The aging rate, k of 
the insulation paper is given based on Equation 12 (Feng, 2013). The Arrhenius equation 
assumes that the degradation process of an insulation paper is controlled by the aging rate, 
k  proportional to exp(–E a/RT) .

𝑘𝑘 = 𝐴𝐴𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅    

 𝑉𝑉𝑒𝑒𝑡𝑡𝑛𝑛𝑝𝑝 ,𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑 =
𝐴𝐴
𝐴𝐴𝑟𝑟
𝑒𝑒

1
𝑅𝑅�

𝐸𝐸𝑎𝑎𝑟𝑟
𝜃𝜃ℎ𝑠𝑠𝑡𝑡 ,𝑟𝑟+273−

𝐸𝐸𝑎𝑎
𝜃𝜃ℎ𝑠𝑠𝑡𝑡+273�

2�𝜃𝜃ℎ𝑠𝑠𝑡𝑡−98�/6    [13] 

         [12]

If an aging rate at a certain temperature, as well as the paper aging acceleration factors, 
are rated as 1.0, then the new relative aging rate, Vntup,modified can be written as Equation 13.

𝑘𝑘 = 𝐴𝐴𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅    

 𝑉𝑉𝑒𝑒𝑡𝑡𝑛𝑛𝑝𝑝 ,𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑 =
𝐴𝐴
𝐴𝐴𝑟𝑟
𝑒𝑒

1
𝑅𝑅�

𝐸𝐸𝑎𝑎𝑟𝑟
𝜃𝜃ℎ𝑠𝑠𝑡𝑡 ,𝑟𝑟+273−

𝐸𝐸𝑎𝑎
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2�𝜃𝜃ℎ𝑠𝑠𝑡𝑡−98�/6    [13]      [13]

where V n t u p , m o d i f i e d  is the new relative aging rate for NTUP, and the subscript r 
represents the rated condition. The rated relative aging rate V  = 1.0 , at this condition, was 
set according to the IEC 60076-7 approach (Feng, 2013; Novkovic et al., 2022), which 
corresponds to a temperature of 98 oC for NTUP (CIGRE Brochure 738, 2018).
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The flow chart of the modified relative aging rate based on aging factors is shown 
in Figure 1. The first step was to obtain the data of HST, 𝜃𝜃ℎ𝑠𝑠𝑡𝑡   based on the differential 
equation method in IEC 60076-7. Next, the rated condition of activation energy, Ear 
was determined based on the maximum activation energy variation (Ese et al., 2010; 
Teymouri & Vahidi, 2019; Lundgaard et al., 2008). The rated pre-exponential factor, Ar 
was obtained from Saleh et al. (2022) based on the maximum aging factors condition. 
The activation energy, Ea for each of the aging mechanisms was set based on Ese et 
al. (2010) for oxidation, while the values for hydrolysis and acid-catalyzed hydrolysis 
were set based on the average activation energies from Teymouri and Vahidi (2019) and 
Lundgaard et al. (2008), respectively. 

Figure 1. The flow chart of modified relative aging rate based on the aging factors
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Similarly, the pre-exponential factor, A  was obtained from Saleh et al. (2022) and relied 
on the types and concentrations of aging factors. All inputs were applied to the formula of 
the relative aging rate as per IEC 60076-7 (Feng, 2013; Novkovic et al., 2022), the aging 
rate under the effects of aging factors, k  and the rated condition of the aging rate, k r.  The 
aging rate according to the oxygen, moisture and acids, k modif ied was determined based 
on the ratio of k  and k r (Hosseinkhanloo et al., 2022; Novkovic et al., 2022). The modified 
relative aging rate with temperature, oxygen, moisture and acids content as a controlling 
parameter, V ntup,modif ied is the ratio between k modif ied and V .

Loss-of-Life (LOL)

The loss-of-life, L over a certain period is given by Equation 14.

𝐿𝐿 = ∫ 𝑉𝑉𝑒𝑒𝑡𝑡𝑛𝑛𝑝𝑝 ,𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑  𝑑𝑑𝑡𝑡 𝑡𝑡2
𝑡𝑡1

 or 𝐿𝐿 ≈ ∑ 𝑉𝑉𝑒𝑒𝑡𝑡𝑛𝑛𝑝𝑝 ,𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑 𝑡𝑡𝑒𝑒𝑁𝑁
𝑒𝑒=1      [14]

where V ntup,modif ied is the relative aging rate during interval according to Equation 13, 
t n is the nth time interval, n is the number of each time interval, and N is the total number 
of intervals during the period.

RESULTS AND ANALYSIS

Forecasting of Transformer Loading and Ambient Temperature Profile

The loading profile of an ONAN transformer with voltage and power ratings of 132/33 
kV and 60 MVA is shown in Figure 2. The actual loading profile was obtained based on 
the interval of 15 minutes for a duration of up to 15 days. Next, the loading profile was 
forecasted up to 24 steps to obtain one year of data. The accuracy measurement based on 
MAPE, MAE, and RMSE was utilized to determine the best SARIMA model for each 

Figure 2. The loading profile of the ONAN transformer for one year
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Table 2
The best mode of the SARIMA model for forecasted loading profile

Forecasting Model (p,d,q)x(P,D,Q)672 MAPE MAE RMSE
1-step ahead 010×110 0.1376 0.0375 0.0788
2-steps ahead 112×110 0.2206 0.0643 0.1089
3-steps ahead 112×110 0.2219 0.0657 0.1090
4-steps ahead 112×110 0.2368 0.0725 0.1145
5-steps ahead 112×110 0.2405 0.0746 0.1172
6-steps ahead 112×110 0.1421 0.0445 0.0809
7-steps ahead 112×110 0.0611 0.0183 0.0254
8-steps ahead 010×110 0.1376 0.0375 0.0788
9-steps ahead 112×110 0.2206 0.0643 0.1089
10-steps ahead 112×110 0.2219 0.0657 0.1090
11-steps ahead 112×110 0.2368 0.0725 0.1145
12-steps ahead 112×110 0.2405 0.0746 0.1172
13-steps ahead 112×110 0.1421 0.0445 0.0809
14-steps ahead 112×110 0.0611 0.0183 0.0254
15-steps ahead 010×110 0.1376 0.0375 0.0788
16-steps ahead 112×110 0.2206 0.0643 0.1089
17-steps ahead 112×110 0.2219 0.0657 0.1090
18-steps ahead 112×110 0.2368 0.0725 0.1145
19-steps ahead 112×110 0.2405 0.0746 0.1172
20-steps ahead 112×110 0.1421 0.0445 0.0809
21-steps ahead 112×110 0.0611 0.0183 0.0254
22-steps ahead 010×110 0.1376 0.0375 0.0788
23-steps ahead 112×110 0.2206 0.0643 0.1089
24-steps ahead 112×110 0.2033 0.0669 0.1058

predicted loading profile, as seen in Table 2 (Saleh et al., 2021). MAPE, MAE and RMSE 
indicate the errors between the actual and forecasted data. The forecasted loading profile, 
validated by comparison with the actual loading profile, shows that the MAPE, MAE, and 
RMSE are less than 10% (Saleh et al., 2021).

Figure 3 shows the ambient temperature profile recorded at one-hour intervals for seven 
months. The best modes of the SARIMA model for each forecasted ambient temperature 
profile are shown in Table 3. The comparison between the forecasted and the actual ambient 
temperature profiles based on the MAPE, MAE, and RMSE are below 10%, signifying a 
high level of accuracy.

Top-Oil Temperature (TOT) and Hot-Spot Temperature (HST)

The TOT profile based on the predicted ambient temperature profile and loading profile is 
depicted in Figure 4. The highest value of TOT is 54.6°C, while the lowest TOT is 36°C. 
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The average TOT is 43.2°C. The HST was computed based on the forecasted loading 
profile, ambient temperature profile and TOT shown in Figure 5. The highest predicted 
HST is 68.1oC, whereas the lowest HST is 39.5oC. The average HST is 50.2oC for one 
year.

Figure 3. The ambient temperature profile of ONAN transformer for one year

Table 3
The best mode of the SARIMA model for forecasted ambient temperature profile

Forecasting Model (p,d,q)x(P,D,Q)168 MAPE MAE RMSE
1-step ahead 000×231 0.0607 1.6778 2.3417
2-steps ahead 000×132 0.0512 1.4447 2.0065

Note. For each 1-step ahead of forecasting, it is equal to 3.5 months or 14 weeks
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Figure 4. The TOT profile of ONAN transformer for one year
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Loss-of-Life (LOL) with Different 
Oxygen Concentrations

The relative aging rate of a transformer 
at different oxygen concentrations and 
moisture in paper less than 0.5% is shown 
in Figures 6(a) to 6(c). The corresponding 
pre-exponential factor was obtained for each 
oxygen concentration (Saleh et al., 2022). 
The activation energy was 74 kJ/mol, while 
the oxygen concentration was varied. The 
rated pre-exponential factor was set once 

Figure 5. The HST profile of the ONAN transformer for one year
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Figure 6. The relative aging rate of a transformer at moisture less than 0.5% under oxygen concentration 
of (a) 12,000 ppm, (b) 21,000 ppm, and (c) 30,000 ppm 
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the oxygen concentration of 30,000 ppm was reached (CIGRE Brochure 738, 2018). The 
increment of oxygen concentration causes the average and highest relative aging rate to 
increase linearly (Table 4).

Table 4
The average and highest relative aging rate of a transformer at different oxygen concentrations and moisture 
less than 0.5%

Oxygen concentration, P (ppm) Average relative ageing rate Highest relative ageing rate
12,000 0.1259 0.1665
21,000 3.7094 4.9082
30,000 7.2929 9.6500

(a)

(b) (c)
Figure 7. The LOL of a transformer at moisture less than 0.5% under oxygen concentration of (a) 12,000 ppm, 
(b) 21,000 ppm, and (c) 30,000 ppm

For each of the increasing steps, The 
LOL at different oxygen concentrations 
and moisture in paper less than 0.5% 
exponentially increases with time, as shown 
in Figures 7(a) to 7(c). The increment of 
oxygen concentration from 12,000 ppm to 
21,000 ppm causes the LOL to increase by 
29.5 (Table 5). The LOL factor increases 
to two when the oxygen concentration 
increases from 21,000 ppm to 30,000 
ppm. Overall, the oxygen concentration 
increments from 12,000 ppm to 30,000 ppm, 
incrementing the LOL factor by 57.9.
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Loss-of-Life (LOL) with Different Moisture Contents

The pre-exponential factors for the moisture in the paper of 1%, 3%, and 5% were utilized 
based on Saleh et al. (2022) to determine the relative aging rate of a transformer. The factor 
was determined based on the low oxygen concentration, i.e., less than 7,000 ppm. The 
transformer’s relative aging rate at various moisture contents under low oxygen concentration 

Table 5
The accumulated LOL value for a transformer at different oxygen concentrations and moisture less than 0.5% 

Oxygen concentration, P (ppm) Loss-of-Life  (minutes) Loss-of-Life (days) Loss-of-Life (years)
12,000 6.6152 × 104 45.9392 ≈ 0.1
21,000 1.9496 × 106 1.3539 × 103 ≈ 4
30,000 3.8331 × 106 2.6619 × 103 ≈ 7

(a)

(b) (c)

Figure 8. The relative aging rate of a transformer at low oxygen concentration under moisture content of (a) 
1.0%, (b) 3.0%, and (c) 5.0%

is depicted in Figures 8(a) to 8(c). The 
activation energy for different moisture 
content was set to 120 kJ/mol, while the rated 
activation energy was set to 130 kJ/mol since 
it represents a hydrolysis aging mechanism 
(Teymouri & Vahidi, 2019). The moisture 
content of the rated pre-exponential factor 
was 5.0%, indicating wet conditions (Arshad 
& Islam, 2011). The average and highest 
relative aging rate increases approximately 
linear once there is an increment of moisture 
content in the paper (Table 6).
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Table 6
The average and highest relative aging rate of a transformer at various moisture content under a low oxygen 
concentration

Moisture content, w (%) Average relative aging rate Highest relative aging rate
1.0 1.3058 1.7423
3.0 7.6677 10.2307
5.0 20.0407 26.7394

Figure 9. The LOL of a transformer at low oxygen concentration under moisture content of (a) 1.0%, (b) 
3.0%, and (c) 5.0% 

(a)

(b) (c)

Table 7
The accumulated LOL value for a transformer at various moisture content under low oxygen concentration  

Moisture content, w (%) Loss-of-Life  (minutes) Loss-of-Life (days) Loss-of-Life (years)
1.0 6.8633 × 105 476.6153 ≈ 1
3.0 4.0302 × 106 2.7987 × 103 ≈ 8
5.0 1.0533 × 107 7.3148 × 103 ≈ 20

The LOL of a transformer at various 
moisture content in the paper under low 
oxygen concentrations is shown in Figure 
9(a) to (c). The LOL of a transformer 
increases over one year once the moisture 
content increases from 1.0% to 5.0%. The 
LOL increases exponentially with time for 
each of the increasing step intervals. The 
increment of moisture content from 1% to 3% 
causes the LOL to increase by 5.9 (Table 7). 
The LOL factor increases further by 2.6 once 
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the moisture content increases from 3% to 5%. The LOL factor increases by 15.3 once the 
moisture content increases from 1% to 5%.

Loss-of-Life (LOL) with Acids

The pre-exponential factors for LMA and HMA were obtained based on Saleh et al. (2022). 
These factors were chosen at a moisture content of 1% for both acids while the activation 
energy was 95 kJ/mol. The pre-exponential factor of LMA at 5% of moisture content 
was used for the rated condition. The rated activation energy was set to 105 kJ/mol. The 
relative aging rate for a transformer under LMA and HMA with 1% moisture content can 
be observed in Figures 10 and 11, respectively. The recorded average and highest relative 
aging rate for a transformer under LMA and HMA at 1% of moisture content is shown in 
Table 8. The HMA has a lower average and highest relative aging rates as compared to 
the LMA.

The LOL of a transformer under LMA and HMA at 1% of moisture content are shown 
in Figures 12 and 13. The LOL of a transformer under LMA is high, and it can cause a 
higher impact on paper degradation as compared to the HMA. The LOL rises exponentially 
with increasing step intervals over one year. The LOL increases by a factor of 11.6 for 
LMA relative to the HMA at a moisture content of 1% (Table 9).

Table 8
The average and highest relative aging rate for a transformer under LMA and HMA at 1% of moisture content 

Moisture content, w (%) Type of acids Average relative aging rate Highest relative aging rate

1.0
LMA 3.8858 4.0635
HMA 0.3352 0.3505

Figure 10. The relative aging rate of a transformer under LMA at the moisture content of 1%
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Figure 11. The relative aging rate of a transformer under HMA at the moisture content of 1%
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Table 9
The accumulated LOL of a transformer under LMA and HMA at the moisture of 1% 

Moisture content, w (%) Type of acids Loss-of-Life  
(minutes)

Loss-of-Life 
(days)

Loss-of-Life 
(years)

1.0
LMA 2.0424 × 106 1418.3241 ≈ 4
HMA 1.7616 × 105 122.3365 ≈ 0.3

Figure 12. The LOL of a transformer under LMA at the moisture content of 1%
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DISCUSSION

Based on the current study, the LOL under the effects of oxygen, moisture, LMA and HMA 
increases exponentially throughout one year of duration. The LOL increases linearly due 
to the small range between each time step and the large range between the initial and final 
computations. The LOL under LMA gives the most impact compared to another factor since 
it is known to react together with moisture to enhance the hydrolysis mechanism (CIGRE 
Brochure 323, 2007; Lundgaard et al., 2008). The increment of oxygen concentration up to 
1,000 ppm can cause the LOL of a transformer to increase by factors between one and four. 

The increment of moisture content in paper to 0.5% can cause an increment of LOL by 
factors between one and two. As the oxygen concentration and moisture content increase, 
the factor decreases. The decreasing factor means that the transformer’s life will continue 
to gradually decline until it reaches zero, which means the transformer is at the very end of 
its life and can no longer be used. For an NTUP, it is obvious that the moisture can cause 
a higher impact on the transformer’s LOL as compared to the oxygen (CIGRE Brochure 
323, 2007; Hosseinkhanloo et al., 2022). It is apparent that the assessment of transformer 
LOL depends not only on the loading, ambient temperature, and HST but also on the aging 
factor and mechanism reaction of a transformer.

The comparison of LOL based on different effects of the aging factor for a transformer 
can be seen in Figure 14. The LOL, for one year of duration based on temperature is the 
lowest, at only two days. In contrast, the LOL under moisture content of 5% at low oxygen 
concentration gives the highest LOL for one year. The factor of LOL is 20.5 for 12,000 
ppm of oxygen concentration relative to the function of temperature at moisture less than 

Figure 13. The LOL of a transformer under HMA at the moisture content of 1%
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0.5%. The oxygen concentration of 21,000 ppm and 30,000 ppm relative to the function of 
temperature yields the factor of 602.8 and 1185.2. The factors of LOL at 1%, 3%, and 5% 
of moisture content relative to the function of temperature under low oxygen concentration 
are 212.2, 1246.1, and 3256.8. The factor of LOL for LMA with regard to the temperature 
at 1% of moisture content is 631.5. On the other hand, the LOL factor for HMA relative to 
the function of temperature at 1% of moisture content is 54.5. Based on Figure 14, LMA 
at 1% moisture content results in higher LOL for the one-year duration compared to LOL 
under 1% moisture content at low oxygen concentration.
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CONCLUSION

It is apparent that with the newly developed relative aging rate, the LMA has the most 
significant impact on the transformer’s LOL, followed by moisture, oxygen, and HMA. 
Based on the current study, the LOL increases with increasing oxygen concentration from 
12,000 ppm to 30,000 ppm. The increment of moisture content from 0.5% to 5% also 
increases the LOL of a transformer. The LOL of a transformer increases exponentially with 
time for each increasing step interval regardless of the presence of any aging factors. LMA 
has a higher impact than HMA, leading to 1,418 days of LOL compared to 122 days of 
LOL. The transformer’s LOL in days increases proportionally in the presence of oxygen 
concentration and moisture content. The impact of oxygen on a transformer’s LOL is low 
compared to moisture and LMA for the NTUP.
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Figure 14. The comparison of LOL based on different effects of the aging factor
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